Nicht angemeldeter Benutzer - Bearbeiten von Seiten ist nur als angemeldeter Benutzer möglich.

Änderungen

Zur Navigation springen Zur Suche springen
41 Bytes entfernt ,  21:17, 6. Jul. 2010
K
Bot: Ergänze: wuu:锡; kosmetische Änderungen
Zeile 210: Zeile 210:  
== Herstellung und Vorkommen ==
 
== Herstellung und Vorkommen ==
 
[[Datei:Fotothek df n-11 0000078.jpg|thumb|left|Zinnerzgewinnung in [[Altenberg (Erzgebirge)|Altenberg]] 1976]]
 
[[Datei:Fotothek df n-11 0000078.jpg|thumb|left|Zinnerzgewinnung in [[Altenberg (Erzgebirge)|Altenberg]] 1976]]
Primäre Zinnvorkommen umfassen [[Lagerstättenkunde#Greisen|Greisen]]-, hydrothermale [[Lagerstättenkunde#Ganglagerstätten|Gang]]- und seltener auch [[Lagerstättenkunde#Skarne|Skarn]]- und [[Lagerstättenkunde#Vulkanisch-exhalative_Lagerst.C3.A4tten|VHMS]]-Lagerstätten. Da das wirtschaftlich bedeutendste Zinnmineral [[Kassiterit]] (auch Zinnstein genannt, SnO<sub>2</sub>) ein sehr stabiles Schwermineral ist, kommt ein großer Teil der Zinnproduktion auch aus sekundären Seifenlagerstätten. In einigen primären Lagerstätten besitzt auch das Mineral [[Stannit]] (Cu<sub>2</sub>FeSnS<sub>4</sub>) Bedeutung für die Zinnproduktion. Auf primären Zinnlagerstätten kommt das Element oft mit [[Arsen]], [[Wolfram]], [[Bismut]], [[Silber]], [[Zink]], [[Kupfer]] und [[Lithium]] vergesellschaftet vor.  
+
Primäre Zinnvorkommen umfassen [[Lagerstättenkunde#Greisen|Greisen]]-, hydrothermale [[Lagerstättenkunde#Ganglagerstätten|Gang]]- und seltener auch [[Lagerstättenkunde#Skarne|Skarn]]- und [[Lagerstättenkunde#Vulkanisch-exhalative Lagerst.C3.A4tten|VHMS]]-Lagerstätten. Da das wirtschaftlich bedeutendste Zinnmineral [[Kassiterit]] (auch Zinnstein genannt, SnO<sub>2</sub>) ein sehr stabiles Schwermineral ist, kommt ein großer Teil der Zinnproduktion auch aus sekundären Seifenlagerstätten. In einigen primären Lagerstätten besitzt auch das Mineral [[Stannit]] (Cu<sub>2</sub>FeSnS<sub>4</sub>) Bedeutung für die Zinnproduktion. Auf primären Zinnlagerstätten kommt das Element oft mit [[Arsen]], [[Wolfram]], [[Bismut]], [[Silber]], [[Zink]], [[Kupfer]] und [[Lithium]] vergesellschaftet vor.  
    
Zur Gewinnung von Zinn wird das Erz zuerst zerkleinert und dann durch verschiedene Verfahren (Aufschlämmen, elektrische/magnetische Scheidung) angereichert. Nach der [[Reduktion (Chemie)|Reduktion]] mit [[Kohlenstoff]] wird das Zinn knapp über seine [[Schmelztemperatur]] erhitzt, so dass es ohne höher schmelzende Verunreinigungen abfließen kann. Heute gewinnt man einen Großteil durch [[Recycling]] und hier durch [[Elektrolyse]].
 
Zur Gewinnung von Zinn wird das Erz zuerst zerkleinert und dann durch verschiedene Verfahren (Aufschlämmen, elektrische/magnetische Scheidung) angereichert. Nach der [[Reduktion (Chemie)|Reduktion]] mit [[Kohlenstoff]] wird das Zinn knapp über seine [[Schmelztemperatur]] erhitzt, so dass es ohne höher schmelzende Verunreinigungen abfließen kann. Heute gewinnt man einen Großteil durch [[Recycling]] und hier durch [[Elektrolyse]].
Zeile 216: Zeile 216:  
In der kontinentalen [[Erdkruste]] ist es mit einem Anteil von etwa 2,3 ppm vorhanden.<ref name="1995wedepohl">Wedepohl, K.H., (1995). The composition of the continental crust. Geochimica et Cosmoschimica Acta 59/7, 1217-1232.</ref>
 
In der kontinentalen [[Erdkruste]] ist es mit einem Anteil von etwa 2,3 ppm vorhanden.<ref name="1995wedepohl">Wedepohl, K.H., (1995). The composition of the continental crust. Geochimica et Cosmoschimica Acta 59/7, 1217-1232.</ref>
   −
Die aktuellen Reserven für Zinn werden mit 5.6 Millionen Tonnen angegeben bei einer Jahresproduktion von 307.000 Tonnen im Jahr 2009. Zu über 80&nbsp;% kommt die Produktion derzeit aus Seifenlagerstätten (Sekundärlagerstätten) an Flüssen sowie im Küstenbereich, vornehmlich aus einer Region beginnend in Zentralchina über [[Thailand]] bis nach [[Indonesien]]. Das Material in den Schwemmlandlagerstätten hat einen Metallanteil von etwa 5&nbsp;%. Erst nach verschiedenen Schritten zur Konzentrierung auf etwa 75&nbsp;% wird ein Schmelzprozess eingesetzt. In Deutschland sind größere Ressourcen im [[Erzgebirge]] vorhanden, wo das Metall vom 13. Jahrhundert an bis 1990 gewonnen wurde. Beispiele sind die Greisenlagerstätte [[Altenberg (Erzgebirge)|Altenberg]] und die Skarnlagerstätte [[SDAG_Wismut#Komplexlagerst.C3.A4tte_P.C3.B6hla|Pöhla]]. Durch verschiedene Firmen findet derzeit auch Exploration auf Zinn im Erzgebirge statt.
+
Die aktuellen Reserven für Zinn werden mit 5.6 Millionen Tonnen angegeben bei einer Jahresproduktion von 307.000 Tonnen im Jahr 2009. Zu über 80 % kommt die Produktion derzeit aus Seifenlagerstätten (Sekundärlagerstätten) an Flüssen sowie im Küstenbereich, vornehmlich aus einer Region beginnend in Zentralchina über [[Thailand]] bis nach [[Indonesien]]. Das Material in den Schwemmlandlagerstätten hat einen Metallanteil von etwa 5 %. Erst nach verschiedenen Schritten zur Konzentrierung auf etwa 75 % wird ein Schmelzprozess eingesetzt. In Deutschland sind größere Ressourcen im [[Erzgebirge]] vorhanden, wo das Metall vom 13. Jahrhundert an bis 1990 gewonnen wurde. Beispiele sind die Greisenlagerstätte [[Altenberg (Erzgebirge)|Altenberg]] und die Skarnlagerstätte [[SDAG Wismut#Komplexlagerst.C3.A4tte P.C3.B6hla|Pöhla]]. Durch verschiedene Firmen findet derzeit auch Exploration auf Zinn im Erzgebirge statt.
    
Die bedeutendste Fördernation für Zinn ist China, gefolgt von Peru und Bolivien. In Europa ist Portugal der größte Produzent als Beiprodukt der VHMS Lagerstätte [[Mina de Neves Corvo|Neves Corvo]].
 
Die bedeutendste Fördernation für Zinn ist China, gefolgt von Peru und Bolivien. In Europa ist Portugal der größte Produzent als Beiprodukt der VHMS Lagerstätte [[Mina de Neves Corvo|Neves Corvo]].
Zeile 271: Zeile 271:  
Zinn besitzt insgesamt 10 natürlich vorkommende [[Isotop]]e. Es sind dies <sup>112</sub>Sn, <sup>114</sub>Sn, <sup>115</sub>Sn, <sup>116</sub>Sn, <sup>117</sub>Sn, <sup>118</sub>Sn, <sup>119</sub>Sn, <sup>120</sub>Sn, <sup>122</sub>Sn und <sup>124</sub>Sn. <sup>120</sub>Sn ist dabei mit 32,4 % Anteil an natürlichem Zinn das häufigste Isotop. Von den instabilen Isotopen ist <sup>126</sub>Sn mit einer [[Halbwertszeit]] von 230.000 Jahren das langlebigste.<ref name="nubase">[http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf G. Audi, O. Bersillon, J. Blachot,  A.H. Wapstra: ''The NUBASE evaluation of nuclear and decay properties''. In: ''Nuclear Physics''. Bd. A 729, 2003, S.&nbsp;3–128.]</ref> Alle anderen Isotope haben eine Halbwertzeit von nur maximal 129 Tagen, jedoch existiert bei <sup>121</sub>Sn ein [[Kernisomer]] mit 44 Jahren Halbwertzeit.<ref name="nubase"/> Als [[Tracer (Nuklearmedizin)|Tracer]] werden am häufigsten die Isotope <sup>113</sub>Sn, <sup>121</sub>Sn, <sup>123</sub>Sn und <sup>125</sub>Sn verwendet. Zinn hat als einziges Element drei stabile Isotope mit ungerader Massenzahl, und mit 10 stabilen Isotopen die meisten stabilen Isotope von allen Elementen überhaupt.
 
Zinn besitzt insgesamt 10 natürlich vorkommende [[Isotop]]e. Es sind dies <sup>112</sub>Sn, <sup>114</sub>Sn, <sup>115</sub>Sn, <sup>116</sub>Sn, <sup>117</sub>Sn, <sup>118</sub>Sn, <sup>119</sub>Sn, <sup>120</sub>Sn, <sup>122</sub>Sn und <sup>124</sub>Sn. <sup>120</sub>Sn ist dabei mit 32,4 % Anteil an natürlichem Zinn das häufigste Isotop. Von den instabilen Isotopen ist <sup>126</sub>Sn mit einer [[Halbwertszeit]] von 230.000 Jahren das langlebigste.<ref name="nubase">[http://www.nndc.bnl.gov/amdc/nubase/Nubase2003.pdf G. Audi, O. Bersillon, J. Blachot,  A.H. Wapstra: ''The NUBASE evaluation of nuclear and decay properties''. In: ''Nuclear Physics''. Bd. A 729, 2003, S.&nbsp;3–128.]</ref> Alle anderen Isotope haben eine Halbwertzeit von nur maximal 129 Tagen, jedoch existiert bei <sup>121</sub>Sn ein [[Kernisomer]] mit 44 Jahren Halbwertzeit.<ref name="nubase"/> Als [[Tracer (Nuklearmedizin)|Tracer]] werden am häufigsten die Isotope <sup>113</sub>Sn, <sup>121</sub>Sn, <sup>123</sub>Sn und <sup>125</sub>Sn verwendet. Zinn hat als einziges Element drei stabile Isotope mit ungerader Massenzahl, und mit 10 stabilen Isotopen die meisten stabilen Isotope von allen Elementen überhaupt.
   −
''→ [[Liste_der_Isotope/5._Periode#50_Zinn|Liste der Zinn-Isotope]]''
+
''→ [[Liste der Isotope/5. Periode#50 Zinn|Liste der Zinn-Isotope]]''
    
== Nachweis ==
 
== Nachweis ==
Als qualitative [[Nachweisreaktion]] für Zinnsalze wird die [[Leuchtprobe]] durchgeführt: Die Lösung wird mit ca. 20%iger Salzsäure und Zinkpulver versetzt, wobei ''[[Naszierender Stoff|naszierender]] Wasserstoff'' frei wird. Der naszierende, atomare Wasserstoff reduziert einen Teil des Zinns bis zum [[Zinn(IV)-hydrid]] SnH<sub>4</sub>. In diese Lösung wird ein [[Reagenzglas]] eingetaucht, das mit kaltem Wasser und [[Kaliumpermanganat]]<b/>lösung gefüllt ist; das Kaliumpermanganat dient hier nur als Kontrastmittel. Diese [[Eprouvette]] wird im Dunklen in die nichtleuchtende Bunsenbrennerflamme gehalten. Bei Anwesenheit von Zinn entsteht sofort eine typisch blaue [[Fluoreszenz]], hervorgerufen durch SnH<sub>4</sub>.<ref name="Harry H. Binder"/><ref>Anmerkung: Im ''Lehrbuch der analytischen und präparativen anorganischen Chemie'' wird als Ursache der Leuchterscheinung eine - wahrscheinlich unzutreffende - Reduktion zu [[Zinn(II)-chlorid]] SnCl<sub>2</sub> genannt.<br>[[Gerhart Jander|Jander]], [[Ewald Blasius|Blasius]]: ''Lehrbuch der analytischen und präparativen anorganischen Chemie'', ISBN 978-3-7776-1388-8, S.&nbsp;499.</ref>
+
Als qualitative [[Nachweisreaktion]] für Zinnsalze wird die [[Leuchtprobe]] durchgeführt: Die Lösung wird mit ca. 20%iger Salzsäure und Zinkpulver versetzt, wobei ''[[Naszierender Stoff|naszierender]] Wasserstoff'' frei wird. Der naszierende, atomare Wasserstoff reduziert einen Teil des Zinns bis zum [[Zinn(IV)-hydrid]] SnH<sub>4</sub>. In diese Lösung wird ein [[Reagenzglas]] eingetaucht, das mit kaltem Wasser und [[Kaliumpermanganat]]<b/>lösung gefüllt ist; das Kaliumpermanganat dient hier nur als Kontrastmittel. Diese [[Eprouvette]] wird im Dunklen in die nichtleuchtende Bunsenbrennerflamme gehalten. Bei Anwesenheit von Zinn entsteht sofort eine typisch blaue [[Fluoreszenz]], hervorgerufen durch SnH<sub>4</sub>.<ref name="Harry H. Binder"/><ref>Anmerkung: Im ''Lehrbuch der analytischen und präparativen anorganischen Chemie'' wird als Ursache der Leuchterscheinung eine - wahrscheinlich unzutreffende - Reduktion zu [[Zinn(II)-chlorid]] SnCl<sub>2</sub> genannt.<br />[[Gerhart Jander|Jander]], [[Ewald Blasius|Blasius]]: ''Lehrbuch der analytischen und präparativen anorganischen Chemie'', ISBN 978-3-7776-1388-8, S.&nbsp;499.</ref>
    
Zur quantitativen Bestimmung von Zinn eignet sich die [[Polarographie]]. In 1 [[Molarität|M]] Schwefelsäure ergibt Zinn(II) eine Stufe bei −0,46 V (gegen [[Kalomelelektrode|SCE]], Reduktion zum Element). Stannat(II) lässt sich in 1 M Natronlauge zum Stannat(IV) oxidieren (−0,73 V) oder zum Element reduzieren (−1,22 V).<ref>J. [[Heyrovský]], J. Kůta, ''Grundlagen der Polarographie'', Akademie-Verlag, Berlin, 1965, S.&nbsp;516.</ref> Im [[Spurenanalytik|Ultraspurenbereich]] bieten sich die Graphitrohr- und Hydridtechnik der [[Atomspektrometrie]] an. Bei der Graphitrohr-AAS werden [[Nachweisgrenze]]n von 0,2&nbsp;µg/l erreicht. In der Hydridtechnik werden die Zinnverbindungen der Probelösung mittels [[Natriumborhydrid]] als gasförmiges [[Stannan]] (Zinnwasserstoff) in die Quarzküvette überführt. Dort zerfällt das Stannan bei ca. 1000&nbsp;°C in die Elemente, wobei der atomare Zinndampf spezifisch die Sn-Linien einer Zinn-[[Hohlkathodenlampe]] absorbiert. Hier sind 0,5&nbsp;µg/l als Nachweisgrenze angegeben worden.<ref>K. Cammann (Hrsg.), ''Instrumentelle Analytische Chemie'', Spektrum Akademischer Verlag, Heidelberg-Berlin, 2001, S.&nbsp;4–47.</ref>
 
Zur quantitativen Bestimmung von Zinn eignet sich die [[Polarographie]]. In 1 [[Molarität|M]] Schwefelsäure ergibt Zinn(II) eine Stufe bei −0,46 V (gegen [[Kalomelelektrode|SCE]], Reduktion zum Element). Stannat(II) lässt sich in 1 M Natronlauge zum Stannat(IV) oxidieren (−0,73 V) oder zum Element reduzieren (−1,22 V).<ref>J. [[Heyrovský]], J. Kůta, ''Grundlagen der Polarographie'', Akademie-Verlag, Berlin, 1965, S.&nbsp;516.</ref> Im [[Spurenanalytik|Ultraspurenbereich]] bieten sich die Graphitrohr- und Hydridtechnik der [[Atomspektrometrie]] an. Bei der Graphitrohr-AAS werden [[Nachweisgrenze]]n von 0,2&nbsp;µg/l erreicht. In der Hydridtechnik werden die Zinnverbindungen der Probelösung mittels [[Natriumborhydrid]] als gasförmiges [[Stannan]] (Zinnwasserstoff) in die Quarzküvette überführt. Dort zerfällt das Stannan bei ca. 1000&nbsp;°C in die Elemente, wobei der atomare Zinndampf spezifisch die Sn-Linien einer Zinn-[[Hohlkathodenlampe]] absorbiert. Hier sind 0,5&nbsp;µg/l als Nachweisgrenze angegeben worden.<ref>K. Cammann (Hrsg.), ''Instrumentelle Analytische Chemie'', Spektrum Akademischer Verlag, Heidelberg-Berlin, 2001, S.&nbsp;4–47.</ref>
Zeile 288: Zeile 288:  
Zu dünner Folie gewalzt nennt man es auch [[Stanniol]], das beispielsweise für [[Lametta]] Verwendung findet. Jedoch ist Zinn im 20.&nbsp;Jahrhundert durch das viel preiswertere [[Aluminium]] verdrängt worden. Bei manchen Farbtuben und Weinflaschenverschlüssen begegnet uns Zinn noch.
 
Zu dünner Folie gewalzt nennt man es auch [[Stanniol]], das beispielsweise für [[Lametta]] Verwendung findet. Jedoch ist Zinn im 20.&nbsp;Jahrhundert durch das viel preiswertere [[Aluminium]] verdrängt worden. Bei manchen Farbtuben und Weinflaschenverschlüssen begegnet uns Zinn noch.
   −
Als Legierungsbestandteil wird Zinn vielfältig verwendet, mit Kupfer zu [[Bronze]] oder anderen Werkstoffen legiert. [[Nordisches Gold]], die Legierung der goldfarbigen Euromünzen, beinhaltet unter anderem 1&nbsp;% Zinn.
+
Als Legierungsbestandteil wird Zinn vielfältig verwendet, mit Kupfer zu [[Bronze]] oder anderen Werkstoffen legiert. [[Nordisches Gold]], die Legierung der goldfarbigen Euromünzen, beinhaltet unter anderem 1 % Zinn.
   −
Als Bestandteil von Metall-Legierungen mit niedrigem Schmelzpunkt ist es unersetzlich. [[Weichlot]] (sogenanntes [[Lötzinn]]) zur Verbindung elektronischer Bauteile (beispielsweise auf [[Leiterplatte]]n) wird mit [[Blei]] (eine typische Mischung ist etwa 63&nbsp;%&nbsp;Sn und 37&nbsp;%&nbsp;Pb) und anderen Metallen in geringerem Anteil legiert. Die Mischung schmilzt bei etwa 183&nbsp;°C. Seit Juli 2006 darf jedoch kein bleihaltiges Lötzinn in elektronischen Geräten mehr verwendet werden (siehe [[RoHS]]), man setzt nun bleifreie Zinnlegierungen mit Kupfer und Silber ein, z.&nbsp;B. Sn95.5Ag3.8Cu0.7 (Schmelztemperatur ca. 220&nbsp;°C).
+
Als Bestandteil von Metall-Legierungen mit niedrigem Schmelzpunkt ist es unersetzlich. [[Weichlot]] (sogenanntes [[Lötzinn]]) zur Verbindung elektronischer Bauteile (beispielsweise auf [[Leiterplatte]]n) wird mit [[Blei]] (eine typische Mischung ist etwa 63 %&nbsp;Sn und 37 %&nbsp;Pb) und anderen Metallen in geringerem Anteil legiert. Die Mischung schmilzt bei etwa 183&nbsp;°C. Seit Juli 2006 darf jedoch kein bleihaltiges Lötzinn in elektronischen Geräten mehr verwendet werden (siehe [[RoHS]]), man setzt nun bleifreie Zinnlegierungen mit Kupfer und Silber ein, z.&nbsp;B. Sn95.5Ag3.8Cu0.7 (Schmelztemperatur ca. 220&nbsp;°C).
    
Da man aber diesen Legierungen nicht traut ([[Zinnpest]] und [[Whisker (Kristallographie)|"Tin whiskers"]]), ist bei der Fertigung elektronischer Baugruppen für Medizintechnik, Sicherheitstechnik, Messgeräte, Luft- u. Raumfahrt sowie für militärische/polizeiliche Verwendung der Einsatz bleifreien Lotes NICHT zulässig.
 
Da man aber diesen Legierungen nicht traut ([[Zinnpest]] und [[Whisker (Kristallographie)|"Tin whiskers"]]), ist bei der Fertigung elektronischer Baugruppen für Medizintechnik, Sicherheitstechnik, Messgeräte, Luft- u. Raumfahrt sowie für militärische/polizeiliche Verwendung der Einsatz bleifreien Lotes NICHT zulässig.
Zeile 303: Zeile 303:     
[[Datei:Rhof-zinngiesser.ogg|thumb|thumbtime=0|Eröffnung der Zinngießerwerkstatt Hermann Harrer im [[Volkskunde- und Freilichtmuseum Roscheider Hof]] ]]
 
[[Datei:Rhof-zinngiesser.ogg|thumb|thumbtime=0|Eröffnung der Zinngießerwerkstatt Hermann Harrer im [[Volkskunde- und Freilichtmuseum Roscheider Hof]] ]]
Der Jahresweltverbrauch an Zinn liegt bei etwa 300.000 t. Davon werden etwa 35&nbsp;% für [[Lot (Metall)|Lote]], etwa 30&nbsp;% für [[Weißblech]] und etwa 30&nbsp;% für [[Chemikalien]] und [[Pigmente]] eingesetzt. Durch die Umstellung der Zinn-Blei-Lote auf bleifreie Lote mit Zinnanteilen > 95&nbsp;% wird der jährliche Bedarf um etwa 10&nbsp;% wachsen. Die Weltmarktpreise steigen in den letzten Jahren kontinuierlich. So wurden an der [[LME]] (London Metal Exchanges) 2003 noch etwa 5000 US-Dollar pro Tonne bezahlt im Mai 2008 jedoch bereits mehr als 24.000 US-Dollar pro Tonne.<ref>[[London Metal Exchange]]: [http://www.lme.co.uk/tin.asp Tin Prices]</ref> Die zehn größten Zinnverbraucher (2003) weltweit sind nach China auf Platz 1 die Länder USA, Japan, Deutschland, übriges Europa, Korea, übriges Asien, Taiwan, Großbritannien und Frankreich.
+
Der Jahresweltverbrauch an Zinn liegt bei etwa 300.000 t. Davon werden etwa 35 % für [[Lot (Metall)|Lote]], etwa 30 % für [[Weißblech]] und etwa 30 % für [[Chemikalien]] und [[Pigmente]] eingesetzt. Durch die Umstellung der Zinn-Blei-Lote auf bleifreie Lote mit Zinnanteilen > 95 % wird der jährliche Bedarf um etwa 10 % wachsen. Die Weltmarktpreise steigen in den letzten Jahren kontinuierlich. So wurden an der [[LME]] (London Metal Exchanges) 2003 noch etwa 5000 US-Dollar pro Tonne bezahlt im Mai 2008 jedoch bereits mehr als 24.000 US-Dollar pro Tonne.<ref>[[London Metal Exchange]]: [http://www.lme.co.uk/tin.asp Tin Prices]</ref> Die zehn größten Zinnverbraucher (2003) weltweit sind nach China auf Platz 1 die Länder USA, Japan, Deutschland, übriges Europa, Korea, übriges Asien, Taiwan, Großbritannien und Frankreich.
    
Zinn wird anstelle von [[Blei]] auch zum [[Bleigießen]] verwendet.
 
Zinn wird anstelle von [[Blei]] auch zum [[Bleigießen]] verwendet.
Zeile 487: Zeile 487:  
[[vi:Thiếc]]
 
[[vi:Thiếc]]
 
[[war:Tin]]
 
[[war:Tin]]
 +
[[wuu:锡]]
 
[[xal:Цанхорһлҗн]]
 
[[xal:Цанхорһлҗн]]
 
[[yi:צין]]
 
[[yi:צין]]
Anonymer Benutzer
Cookies helfen uns bei der Bereitstellung von imedwiki. Durch die Nutzung von imedwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü