Nicht angemeldeter Benutzer - Bearbeiten von Seiten ist nur als angemeldeter Benutzer möglich.

Änderungen

Zur Navigation springen Zur Suche springen
65 Bytes hinzugefügt ,  01:15, 4. Jan. 2011
+ DOI
Zeile 22: Zeile 22:  
| Elektronenkonfiguration = &#91;[[Krypton|Kr]]&#93; 4[[D-Orbital|d]]<sup>10</sup> 5[[S-Orbital|s]]<sup>2</sup> 5[[P-Orbital|p]]<sup>2</sup>
 
| Elektronenkonfiguration = &#91;[[Krypton|Kr]]&#93; 4[[D-Orbital|d]]<sup>10</sup> 5[[S-Orbital|s]]<sup>2</sup> 5[[P-Orbital|p]]<sup>2</sup>
 
| ElektronenProEnergieNiveau = 2, 8, 18, 18, 4
 
| ElektronenProEnergieNiveau = 2, 8, 18, 18, 4
| Austrittsarbeit = 4,42 [[Elektronenvolt|eV]]<ref>Ludwig Bergmann, Clemens Schaefer, Rainer Kassing: ''[[Bergmann-Schaefer Lehrbuch der Experimentalphysik|Lehrbuch der Experimentalphysik,]] Band 6: Festkörper''. 2. Auflage, Walter de Gruyter, 2005, ISBN 978-3-11-017485-4, S.&nbsp;361.</ref>
+
| Austrittsarbeit = 4,42 [[Elektronenvolt|eV]]<ref>Ludwig Bergmann, Clemens Schaefer, Rainer Kassing: ''[[Bergmann-Schaefer Lehrbuch der Experimentalphysik|Lehrbuch der Experimentalphysik]], Band 6: Festkörper''. 2. Auflage, Walter de Gruyter, 2005, ISBN 978-3-11-017485-4, S.&nbsp;361.</ref>
 
| Ionisierungsenergie_1 = 708,6
 
| Ionisierungsenergie_1 = 708,6
 
| Ionisierungsenergie_2 = 1411,8
 
| Ionisierungsenergie_2 = 1411,8
Zeile 32: Zeile 32:  
| Kristallstruktur = tetragonal
 
| Kristallstruktur = tetragonal
 
| Dichte =
 
| Dichte =
5,769 g/cm<sup>3</sup> (20 [[Grad Celsius|°C]]) <small>(α-Zinn)</small><ref name="Greenwood">N. N. Greenwood und A. Earnshaw: Chemie der Elemente, 1. Auflage, 1988, S. 482, ISBN 3-527-26169-9.</ref><br />
+
5,769 g/cm<sup>3</sup> (20 [[Grad Celsius|°C]]) <small>(α-Zinn)</small><ref name="Greenwood">N. N. Greenwood und A. Earnshaw: ''Chemie der Elemente'', 1. Auflage, VCH, Weinheim 1988, ISBN 3-527-26169-9, S.&nbsp;482.</ref><br />
 
7,265 g/cm<sup>3</sup> (20 [[Grad Celsius|°C]]) <small>(β-Zinn)</small><ref name="Greenwood"/>
 
7,265 g/cm<sup>3</sup> (20 [[Grad Celsius|°C]]) <small>(β-Zinn)</small><ref name="Greenwood"/>
 
| RefTempDichte_K =
 
| RefTempDichte_K =
 
| Mohshärte = 1,5
 
| Mohshärte = 1,5
| Magnetismus = α-Zinn [[Diamagnetismus|diamagnetisch]] ([[Magnetische Suszeptibilität|<math>\chi_{m}</math>]] = −2,3 · 10<sup>−5</sup><ref name="CRC-H">David R. Lide: ''[[CRC Handbook of Chemistry and Physics]]: A ready-reference book of chemical and physical data'', 90. Aufl., CRC Taylor & Francis, Boca Raton Fla. 2009, ISBN 978-1-4200-9084-0, Section 4, S.&nbsp;4-142 bis 4-147. Die Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.</ref><br />β-Zinn [[Paramagnetismus|paramagnetisch]] <math>\chi_{m}</math> = 2,4 · 10<sup>−6</sup>)<ref name="CRC-H" />
+
| Magnetismus = α-Zinn [[Diamagnetismus|diamagnetisch]] ([[Magnetische Suszeptibilität|<math>\chi_{m}</math>]] = −2,3 · 10<sup>−5</sup>)<ref name="CRC-H">David R. Lide: ''[[CRC Handbook of Chemistry and Physics]]: A ready-reference book of chemical and physical data'', 90. Aufl., CRC Taylor & Francis, Boca Raton Fla. 2009, ISBN 978-1-4200-9084-0, Section 4, S.&nbsp;4-142 bis 4-147. Die Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.</ref><br />β-Zinn [[Paramagnetismus|paramagnetisch]] (<math>\chi_{m}</math> = 2,4 · 10<sup>−6</sup>)<ref name="CRC-H" />
 
| Schmelzpunkt_K = 505,08
 
| Schmelzpunkt_K = 505,08
 
| Schmelzpunkt_C = 231,93
 
| Schmelzpunkt_C = 231,93
Zeile 58: Zeile 58:  
| Oxide =
 
| Oxide =
 
| Basizität = [[amphoter]]
 
| Basizität = [[amphoter]]
| Normalpotential = −0,137 [[Volt|V]] (Sn<sup>2+</sup> + 2&nbsp;e<sup>−</sup> → Sn)
+
| Normalpotential   = −0,137 [[Volt|V]] (Sn<sup>2+</sup> + 2&nbsp;e<sup>−</sup> → Sn)
 
| Elektronegativität = 1,96
 
| Elektronegativität = 1,96
 
| Quelle GefStKz    = <ref name="alfa-SDB">{{Alfa|11013|Name=Zinn (Pulver, keine R/S-Sätze)|Datum=7. Januar 2010}}</ref>
 
| Quelle GefStKz    = <ref name="alfa-SDB">{{Alfa|11013|Name=Zinn (Pulver, keine R/S-Sätze)|Datum=7. Januar 2010}}</ref>
Zeile 72: Zeile 72:  
| NH = 0,97
 
| NH = 0,97
 
}}
 
}}
   
{{Infobox Chemisches Element/Isotop
 
{{Infobox Chemisches Element/Isotop
 
| Massenzahl= 113  
 
| Massenzahl= 113  
Zeile 214: Zeile 213:  
Zur Gewinnung von Zinn wird das Erz zuerst zerkleinert und dann durch verschiedene Verfahren (Aufschlämmen, elektrische/magnetische Scheidung) angereichert. Nach der [[Reduktion (Chemie)|Reduktion]] mit [[Kohlenstoff]] wird das Zinn knapp über seine [[Schmelztemperatur]] erhitzt, so dass es ohne höher schmelzende Verunreinigungen abfließen kann. Heute gewinnt man einen Großteil durch [[Recycling]] und hier durch [[Elektrolyse]].
 
Zur Gewinnung von Zinn wird das Erz zuerst zerkleinert und dann durch verschiedene Verfahren (Aufschlämmen, elektrische/magnetische Scheidung) angereichert. Nach der [[Reduktion (Chemie)|Reduktion]] mit [[Kohlenstoff]] wird das Zinn knapp über seine [[Schmelztemperatur]] erhitzt, so dass es ohne höher schmelzende Verunreinigungen abfließen kann. Heute gewinnt man einen Großteil durch [[Recycling]] und hier durch [[Elektrolyse]].
   −
In der kontinentalen [[Erdkruste]] ist es mit einem Anteil von etwa 2,3 ppm vorhanden.<ref name="1995wedepohl">Wedepohl, K.H., (1995). The composition of the continental crust. Geochimica et Cosmoschimica Acta 59/7, S.&nbsp;1217–1232.</ref>
+
In der kontinentalen [[Erdkruste]] ist es mit einem Anteil von etwa 2,3 ppm vorhanden.<ref name="1995wedepohl">Wedepohl, K.H., (1995). The composition of the continental crust. Geochimica et Cosmoschimica Acta 59/7, S.&nbsp;1217–1232; {{DOI|10.1016/0016-7037(95)00038-2}}.</ref>
    
Die aktuellen Reserven für Zinn werden mit 5,6 Millionen Tonnen angegeben bei einer Jahresproduktion von 307.000 Tonnen im Jahr 2009. Zu über 80 % kommt die Produktion derzeit aus Seifenlagerstätten (Sekundärlagerstätten) an Flüssen sowie im Küstenbereich, vornehmlich aus einer Region beginnend in Zentralchina über [[Thailand]] bis nach [[Indonesien]]. Das Material in den Schwemmlandlagerstätten hat einen Metallanteil von etwa 5 %. Erst nach verschiedenen Schritten zur Konzentrierung auf etwa 75 % wird ein Schmelzprozess eingesetzt. In Deutschland sind größere Ressourcen im [[Erzgebirge]] vorhanden, wo das Metall vom 13. Jahrhundert an bis 1990 gewonnen wurde. Beispiele sind die Greisenlagerstätte [[Altenberg (Erzgebirge)|Altenberg]] und die Skarnlagerstätte [[SDAG Wismut#Komplexlagerst.C3.A4tte P.C3.B6hla|Pöhla]]. Durch verschiedene Firmen findet derzeit auch Exploration auf Zinn im Erzgebirge statt.
 
Die aktuellen Reserven für Zinn werden mit 5,6 Millionen Tonnen angegeben bei einer Jahresproduktion von 307.000 Tonnen im Jahr 2009. Zu über 80 % kommt die Produktion derzeit aus Seifenlagerstätten (Sekundärlagerstätten) an Flüssen sowie im Küstenbereich, vornehmlich aus einer Region beginnend in Zentralchina über [[Thailand]] bis nach [[Indonesien]]. Das Material in den Schwemmlandlagerstätten hat einen Metallanteil von etwa 5 %. Erst nach verschiedenen Schritten zur Konzentrierung auf etwa 75 % wird ein Schmelzprozess eingesetzt. In Deutschland sind größere Ressourcen im [[Erzgebirge]] vorhanden, wo das Metall vom 13. Jahrhundert an bis 1990 gewonnen wurde. Beispiele sind die Greisenlagerstätte [[Altenberg (Erzgebirge)|Altenberg]] und die Skarnlagerstätte [[SDAG Wismut#Komplexlagerst.C3.A4tte P.C3.B6hla|Pöhla]]. Durch verschiedene Firmen findet derzeit auch Exploration auf Zinn im Erzgebirge statt.
Zeile 280: Zeile 279:  
Als qualitative [[Nachweisreaktion]] für Zinnsalze wird die [[Leuchtprobe]] durchgeführt: Die Lösung wird mit ca. 20%iger Salzsäure und Zinkpulver versetzt, wobei ''[[Naszierender Stoff|naszierender]] Wasserstoff'' frei wird. Der naszierende, atomare Wasserstoff reduziert einen Teil des Zinns bis zum [[Zinn(IV)-hydrid]] SnH<sub>4</sub>. In diese Lösung wird ein [[Reagenzglas]] eingetaucht, das mit kaltem Wasser und [[Kaliumpermanganat]]<b/>lösung gefüllt ist; das Kaliumpermanganat dient hier nur als Kontrastmittel. Diese [[Eprouvette]] wird im Dunklen in die nichtleuchtende Bunsenbrennerflamme gehalten. Bei Anwesenheit von Zinn entsteht sofort eine typisch blaue [[Fluoreszenz]], hervorgerufen durch SnH<sub>4</sub>.<ref name="Harry H. Binder"/><ref>Im ''Lehrbuch der analytischen und präparativen anorganischen Chemie'' wird als Ursache der Leuchterscheinung eine – wahrscheinlich unzutreffende – Reduktion zu [[Zinn(II)-chlorid]] SnCl<sub>2</sub> genannt.<br />[[Gerhart Jander|Jander]], [[Ewald Blasius|Blasius]]: ''Lehrbuch der analytischen und präparativen anorganischen Chemie'', ISBN 978-3-7776-1388-8, S.&nbsp;499.</ref>
 
Als qualitative [[Nachweisreaktion]] für Zinnsalze wird die [[Leuchtprobe]] durchgeführt: Die Lösung wird mit ca. 20%iger Salzsäure und Zinkpulver versetzt, wobei ''[[Naszierender Stoff|naszierender]] Wasserstoff'' frei wird. Der naszierende, atomare Wasserstoff reduziert einen Teil des Zinns bis zum [[Zinn(IV)-hydrid]] SnH<sub>4</sub>. In diese Lösung wird ein [[Reagenzglas]] eingetaucht, das mit kaltem Wasser und [[Kaliumpermanganat]]<b/>lösung gefüllt ist; das Kaliumpermanganat dient hier nur als Kontrastmittel. Diese [[Eprouvette]] wird im Dunklen in die nichtleuchtende Bunsenbrennerflamme gehalten. Bei Anwesenheit von Zinn entsteht sofort eine typisch blaue [[Fluoreszenz]], hervorgerufen durch SnH<sub>4</sub>.<ref name="Harry H. Binder"/><ref>Im ''Lehrbuch der analytischen und präparativen anorganischen Chemie'' wird als Ursache der Leuchterscheinung eine – wahrscheinlich unzutreffende – Reduktion zu [[Zinn(II)-chlorid]] SnCl<sub>2</sub> genannt.<br />[[Gerhart Jander|Jander]], [[Ewald Blasius|Blasius]]: ''Lehrbuch der analytischen und präparativen anorganischen Chemie'', ISBN 978-3-7776-1388-8, S.&nbsp;499.</ref>
   −
Zur quantitativen Bestimmung von Zinn eignet sich die [[Polarographie]]. In 1 [[Molarität|M]] Schwefelsäure ergibt Zinn(II) eine Stufe bei −0,46 V (gegen [[Kalomelelektrode|SCE]], Reduktion zum Element). Stannat(II) lässt sich in 1 M Natronlauge zum Stannat(IV) oxidieren (−0,73 V) oder zum Element reduzieren (−1,22 V).<ref>J. [[Heyrovský]], J. Kůta, ''Grundlagen der Polarographie'', Akademie-Verlag, Berlin, 1965, S.&nbsp;516.</ref> Im [[Spurenanalytik|Ultraspurenbereich]] bieten sich die Graphitrohr- und Hydridtechnik der [[Atomspektrometrie]] an. Bei der Graphitrohr-AAS werden [[Nachweisgrenze]]n von 0,2&nbsp;µg/l erreicht. In der Hydridtechnik werden die Zinnverbindungen der Probelösung mittels [[Natriumborhydrid]] als gasförmiges [[Stannan]] (Zinnwasserstoff) in die Quarzküvette überführt. Dort zerfällt das Stannan bei ca. 1000&nbsp;°C in die Elemente, wobei der atomare Zinndampf spezifisch die Sn-Linien einer Zinn-[[Hohlkathodenlampe]] absorbiert. Hier sind 0,5&nbsp;µg/l als Nachweisgrenze angegeben worden.<ref>K. Cammann (Hrsg.), ''Instrumentelle Analytische Chemie'', Spektrum Akademischer Verlag, Heidelberg-Berlin, 2001, S.&nbsp;4–47.</ref>
+
Zur quantitativen Bestimmung von Zinn eignet sich die [[Polarographie]]. In 1 [[Molarität|M]] Schwefelsäure ergibt Zinn(II) eine Stufe bei −0,46 V (gegen [[Kalomelelektrode|SCE]], Reduktion zum Element). Stannat(II) lässt sich in 1 M Natronlauge zum Stannat(IV) oxidieren (−0,73 V) oder zum Element reduzieren (−1,22 V).<ref>J. [[Heyrovský]], J. Kůta, ''Grundlagen der Polarographie'', Akademie-Verlag, Berlin, 1965, S.&nbsp;516.</ref> Im [[Spurenanalytik|Ultraspurenbereich]] bieten sich die Graphitrohr- und Hydridtechnik der [[Atomspektrometrie]] an. Bei der Graphitrohr-AAS werden [[Nachweisgrenze]]n von 0,2&nbsp;µg/l erreicht. In der Hydridtechnik werden die Zinnverbindungen der Probelösung mittels [[Natriumborhydrid]] als gasförmiges [[Stannan]] (Zinnwasserstoff) in die Quarzküvette überführt. Dort zerfällt das Stannan bei ca. 1000&nbsp;°C in die Elemente, wobei der atomare Zinndampf spezifisch die Sn-Linien einer Zinn-[[Hohlkathodenlampe]] absorbiert. Hier sind 0,5&nbsp;µg/l als Nachweisgrenze angegeben worden.<ref>K. Cammann (Hrsg.): ''Instrumentelle Analytische Chemie'', Spektrum Akademischer Verlag, Heidelberg-Berlin, 2001, S.&nbsp;4–47.</ref>
    
== Biologische Wirkung ==
 
== Biologische Wirkung ==
Anonymer Benutzer
Cookies helfen uns bei der Bereitstellung von imedwiki. Durch die Nutzung von imedwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü