Nicht angemeldeter Benutzer - Bearbeiten von Seiten ist nur als angemeldeter Benutzer möglich.
Änderungen
Zur Navigation springen
Zur Suche springen
Zeile 232:
Zeile 232:
+
→Aggregatzustand
=== Aggregatzustand ===
=== Aggregatzustand ===
[[Image:Pouring_liquid_mercury_bionerd.jpg|thumb|200px|Flüssiges Quecksilber]]
Die Antwort auf die Frage, warum Quecksilber flüssig ist, findet sich in der Betrachtung der Bindung zwischen den Quecksilberatomen. Quecksilber hat eine einmalige Elektronenkonfiguration, die keine stabile Bindung zwischen den einzelnen Atomen zulässt. Die Atome aller anderen bei Raumtemperatur festen Metalle werden durch das sogenannte [[Elektronengas]] [[elektrostatisch]] zusammengehalten, welches aus delokalisierten [[Elektron]]en der äußeren Schale der Atome besteht. Die [[Metallbindung]] kommt durch sogenannte Bänder zustande, welche sämtliche Elektronen eines Energieniveaus enthalten. Solche Bänder werden benötigt, um das [[Pauli-Prinzip]] zu erfüllen. Bei der metallischen Bindung springen Elektronen vom [[Valenzband]], dem energetisch am höchsten liegenden mit Elektronen vollbesetzte Band, ins [[Leitungsband]], dem nicht komplett aufgefüllten Band, und zurück. Durch diese Wechselwirkung werden die Atome zusammengehalten. Als Element der 12. Gruppe des [[Periodensystem|PSE]] besitzen Quecksilberatome komplett gefüllte s- und d-[[Orbitale]], was eine sehr stabile und energetisch günstige Konstellation bedeutet. Das Leitungsband ist leer. Bei [[Zink]] und [[Cadmium]], die in derselben Gruppe des PSE wie Quecksilber stehen, jedoch bei Raumtemperatur fest sind, ist der energetische Unterschied zwischen dem Valenzband zum Leitungsband so gering, dass Elektronen problemlos vom Valenz- ins Leitungsband springen können. Es kommt zu einer metallischen Bindung. Die Besonderheit bei Quecksilber liegt in dem zusätzlichen f-Orbital, welches Zink und Cadmium nicht besitzen. Während Zink und Cadmium jeweils 12 Elektronen in der äußersten Schale haben, hat Quecksilber 26 darin. Aufgrund der [[Lanthanoidenkontraktion]] und des [[Relativistischer Effekt|relativistischen Effekts]] kommt es zu einem Massezuwachs und einer weniger effizienten Abschirmung der Kernladung. Besetzte Orbitale werden so näher an den Kern herangezogen, sowie auch das Valenzband des Quecksilbers. Unbesetzte Orbitale, das Leitungsband, werden nicht näher an den Kern gezogen, was zu einer gewaltigen Energiedifferenz zwischen Valenz- und Leitungsband führt, die bei Zink und Cadmium nicht auftritt. So können kaum Elektronen das Valenzband verlassen, also auch keine gemeinsame Bindung ausbilden. Dies erklärt zugleich auch die leichte Flüchtigkeit und die für Metalle untypische ''schlechte'' Leitfähigkeit des Quecksilbers.
Die Antwort auf die Frage, warum Quecksilber flüssig ist, findet sich in der Betrachtung der Bindung zwischen den Quecksilberatomen. Quecksilber hat eine einmalige Elektronenkonfiguration, die keine stabile Bindung zwischen den einzelnen Atomen zulässt. Die Atome aller anderen bei Raumtemperatur festen Metalle werden durch das sogenannte [[Elektronengas]] [[elektrostatisch]] zusammengehalten, welches aus delokalisierten [[Elektron]]en der äußeren Schale der Atome besteht. Die [[Metallbindung]] kommt durch sogenannte Bänder zustande, welche sämtliche Elektronen eines Energieniveaus enthalten. Solche Bänder werden benötigt, um das [[Pauli-Prinzip]] zu erfüllen. Bei der metallischen Bindung springen Elektronen vom [[Valenzband]], dem energetisch am höchsten liegenden mit Elektronen vollbesetzte Band, ins [[Leitungsband]], dem nicht komplett aufgefüllten Band, und zurück. Durch diese Wechselwirkung werden die Atome zusammengehalten. Als Element der 12. Gruppe des [[Periodensystem|PSE]] besitzen Quecksilberatome komplett gefüllte s- und d-[[Orbitale]], was eine sehr stabile und energetisch günstige Konstellation bedeutet. Das Leitungsband ist leer. Bei [[Zink]] und [[Cadmium]], die in derselben Gruppe des PSE wie Quecksilber stehen, jedoch bei Raumtemperatur fest sind, ist der energetische Unterschied zwischen dem Valenzband zum Leitungsband so gering, dass Elektronen problemlos vom Valenz- ins Leitungsband springen können. Es kommt zu einer metallischen Bindung. Die Besonderheit bei Quecksilber liegt in dem zusätzlichen f-Orbital, welches Zink und Cadmium nicht besitzen. Während Zink und Cadmium jeweils 12 Elektronen in der äußersten Schale haben, hat Quecksilber 26 darin. Aufgrund der [[Lanthanoidenkontraktion]] und des [[Relativistischer Effekt|relativistischen Effekts]] kommt es zu einem Massezuwachs und einer weniger effizienten Abschirmung der Kernladung. Besetzte Orbitale werden so näher an den Kern herangezogen, sowie auch das Valenzband des Quecksilbers. Unbesetzte Orbitale, das Leitungsband, werden nicht näher an den Kern gezogen, was zu einer gewaltigen Energiedifferenz zwischen Valenz- und Leitungsband führt, die bei Zink und Cadmium nicht auftritt. So können kaum Elektronen das Valenzband verlassen, also auch keine gemeinsame Bindung ausbilden. Dies erklärt zugleich auch die leichte Flüchtigkeit und die für Metalle untypische ''schlechte'' Leitfähigkeit des Quecksilbers.